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COMPUTATION OF THE ROTATIONAL TRANSITION
PROBABILITIES OF DIATOMIC MOLECULES WITH A MORSE
POTENTIAL

A. N, Vargin, N. A. Ganina, UDC 539.196.3:539.196.5
E. K. Kostyuchenko, V. K. Konyukhov,
A. I. Lukovnikov, and V, I. Selyakov

This paper is a continuation of the computations of the excitation probabilities of the rotational degrees of
freedom of diatomic molecules during collisions carried out in [1], In connection with the enormous computa-
tional difficulties occurring in quantum-mechanical computations [2],aquasiclassical approach [3] is used
which allows obtaining analytical dependence of the probability on both the number of the rotational level char-
acterizing the transition and on the energy of the colliding particles, This last circumstance is a factor of no
little importance in the application of the probabilities obtained in the description of the level kinetics of ro-
tational relwxation under different conditions, for instance, under the efflux of gas mixtures from a slot of
nozzle into a vacuum,

Analytic expressions are obtained in this paper for the rotational transition probabilities at which the
Quantum numbers of one (R—T transitions) or both (R—R transitions) molecules change by 1 or 2, A multipli~
cative integral is used in the solution of the system of equations for the probability amplitudes of the appropri-
ate processes, In contrast to [1, 3], the change in energy in an inelastic collision is taken into account in the
classical equation of motion, and the averaging of the probabilities with respect to the total energy is carried
out more correctly, An experimental potential and a potential in the Morse form are used in computing the
probabilities, The need for such computations is due, in particular, to the substantial influence of attraction on
the magnitude of the probability for low energies of the cooliding molecules.

Let us recall that according to the method described earlier, the molecule trajectory is considered
classical with the use of the spherically symmetric part of the intermolecular potential, while the rotational
motion is considered quantum mechanically. The anisotropic part of the potential hence governs the form of
the perturbation operation,

Moscow, Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 10-18, May-
June, 1978, Original article submitted April 15, 1977.

0021-8944/78/1903-0287307.50 ©1978 Plenum Publishing Corporation 287



Let us examine a system consisting of two colliding molecules. The rotational motion of the system is
determined by the Schroedinger equation

2 (AP AP + B, +V,]w,
where flr is the Hamiltonian of relative rotation of the molecule, Hr(l) is the Hamiltonian of free rotation of

the i-th molecule, ¥ is the angular part of the wave function of the system of two molecules, and V. is the part
of the intermolecular potential dependent on the molecule orientations.

1)

The angular part of the wave function describing the state of the system of two molecules can be repre-
sented in the form of a product of angular parts of wave functions characterizing the free rotation of the mole-
cules and the waye function governing the rotation of the system as a whole. Using the model of a rigid rotator
to describe the rotation of the diatomic molecules, we can expand the angular part of the wave function in the
spherical harmonic functions Y [1]:

¥ = j%r C (junyjamadm | ) exp{‘—% le (1) + & () = w(J)]} X

mem.m
s ijm'l (01’ ¢1) )ff:mz (621 (F:!)Y‘Jm (9' (P)v (2)

where j; and mj are quantum numbers characterizing the intrinsic rotational moment of the i~th molecule and
its projection; j and m are quantum numbers characterizing the angular momentum of the relative rotation of
the molecule and its projection; € (j;) is the energy of free rotation of the i-th molecule; w(J) is the energy of
relative rotation of the two molecules; 6j and ¢ are angles characterizing the rotation of the i-th molecule;
gi and ¢i are angles describing the relative rotation of the molecules; and C(jym;j,myJmlt) are expansion co-
efficients. :

Let us note that £(j) =Bgj(j + 1), where B, is the rotational constant of the molecule.

Substituting the wave function (2) into (1) and taking account of the orthonormalized spherical harmonics,
we obtain an equation for the coefficients C(jymyj,myJm|t) which can be written in the matrix form [1, 3]

dC(tydt = AC(¢t),
where A is a Hermitian matrix with the elements
A (jymyf,moJm | 1) = (jimijomad 'm’ |V, | g famedm> exp{—— ‘% [AZ + Aw (J)]];

AT =e(jy) —e(j1) — e (o) — e (ja)s
Aw(J)y = w () —w(J").

The solution of such a system with the initial condition

0 ‘,6 mm?e
mymy mamy

C (jymyj.maJm | i)—»éi ;’“61',,]'06']']06
as t— — o, where 0 is the Kronecker delta, is expfessed in terms of a Volterra multiplicative integral [5]:
) t
C(ty=C(—o) § A(x)dr.

The transition probability of a system of states with the quantum numbers jjmjimdJ’m® into a state
j'ymigjTymis It m' equals
P (fi—1is 2> 1o J, E) =|C (jimyjomaJm| + oo 2.
it is convenient to use the expression of the multiplicative integral obtained by Magnus in the form of an
exponential of a matrix series [5] for the calculations:
C (+ o0) = C(— o) exp K (+ o)),

e a0 +o0

E(+o)= | Amdr—a | dn | du[3m)A@)] - @
-+ % _\ dt; ‘,\1 dr, —\ dt, { [:1 (t1) [/1 (Ts) 4 (Ta)]] s [[;1 (1) 4 (Tl)];1 (TS)]} e
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where [ﬁ(ri)ﬁ (19)] is the commutator of the operators A(Tj) and ﬁ(rz); exp {K( +oo)} =I+f{ S 2)KE 4, ., Iis
the unit matrix,

The selection of the intermolecular potential V determines the magnitude of the rotational transition
probabilities and the nature of their dependence on the energy and the quantum numbers, The magnitude of the
transition probability determined for some one energy is due to the value of the potential at the greatest
closure range [6]. Short ranges play the major part in the scattering of fast netural particles by atoms or
molecules, and the repulsion forces are governing. A fast change in the total potential with distance permits
the influence of weak attraction forces near the initial and terminal sections of the trajectory to be neglected,
However, as will be stiown below, long-range attraction forces indirectly influence the rotational transition
probability during collisions with low energies by accelerating the relative motion of the colliding particles.
For collisions between polar molecules, the dipole—dipole part of the interaction is often takeninto account as
the component of the long-range forces, together with the usual components of the potential in the Morse or
Lennard-Jones form [7]. It would be false (even for polar molecules) to limit oneself to just dipole—dipole
interaction [8], which is valid only at remote ranges. A potential in the Morse form, which also takes attraction
into account in contrast to the exponential potential, is used in this paper. For a pair of diatomic molecules,
the potential is here expressed in the form of the sum of interaction potentials between separate atoms of the
molecules:

V= k_E“ i?.:. ) {Dix exp (— a;ri5) — Diy exp (— 2wl in/2)1, 4)
where D'y, D"y, and @ j; are intermolecular potential parameters; rjik is the spacing between two atoms of
the colliding molecules.

If the internuclear spacings £; are small compared to the intermolecular spacing R, then (4) for the in-
termolecular potential can be expanded in a series of Legendre polynomials Pi{cos x) [3]. Assuming ajk to be
identical for all pairs of atoms, let us represent the interaction potentials between the two identical diatomic
molecules, consisting of atoms with masses y,; and p,, in the form

4 2

V = emoh {B' + X Big[P, (cosy) + Py (cos k)] = 2 BisP; (costy) X
i fe=i

' aR 4
X P (cosTy) — } —e Z {B” + X Bip [P, (cos¥y) + P, (cos%y)] +
=1

i

2
- _El Bi; Pi(cos y) Py (cosLy) & ... 1, (5)
= -

T o . .
where B'=aj +%/3a'y; B'yg=a'y; Byg=2/ga'y; Byy="/sa's; B'yy=%/s527s B'yy=b'y; By = /by

(Dt Dyy) H= 0 ud (D}, 40y )

1

a; = (&) S
I (g = )
ol Iy 1 Uy o alp?
, o ol Wi Dag -t (=) 2005 Do 5~ w3 D
bi = (gor)? MLI22 1y Pya 5oty D4y

’

By + )
and Xj is the angle between the direction of the intermolecular vector and the axis of the i-th molecule,

The same relations can be obtained for the coefficients B"j as for the coefficients B'jy by replacing
D'jk by D"j and @ and o/2. Let us note that the convergence of the series (5) is determined by the smallness
of g,

The energy conservation equation for a system of two colliding molecules is written in the form

J21i2
23R’

1 dR\2
—u{ o E vV (R —
(5 o (B) (®)
where E is total energy of the system of two molecules without taking account of the energy of the internal de-
grees of freedom, V,(R) is the spherical part of the intermolecular potential, Jh is the angular momentum of
the relative rotation of the molecules, and M is the reduced mass of the two particles,

The quantities E and J are changed when inelastic collisions occur, particularly rotational transitions.
Hence, the right side of (6) for the times before and after collision differs by the small quantity AT, equal to
the change in absolute value in the internal energy of the system during the collision. The change in J during
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the collision can be neglected; since a change in several units*is negligibly small for large J (®30-40), and for
small J the magnitude of the energy of relative molecule rotation is considerably less than the kinetic energy
of the colliding molecules. To simplify (6), the variable quantity R was replaced by the constant R, character-
izing the range of effective molecule interaction [1] in the term describing the relative molecule rotation.

The solutlon of (6) by using the spherically symmetric part of the intermolecular potential Vo(R) =
B'e~0¢R—Bre /2 permits finding the motion trajectory of the colliding molecules and, therefore, also the
time dependence of the perturbation operator characterizing the molecule interaction. In this case, the terms
in the expression for the potential are written in the form

. 4B’ / Tz N2 | : iB N T2 A W) =2
Be B2 (F— 1+ = E— ch s | E — —
B 2MR? T B 2 R? 2 ( 2rie)! 1

\ J
_— U o . J°RE 4 t
Ble _2( 211R )[1,/1““3"2 ( 2,1133) °hl/ﬁT(E— SAIR2 )1_1} '

\

t
If the commutator [A(t \ (1) dr] tends to zero and the interaction is "weak" (i.e., the matrix elements
?

K are sufficiently small), only the first terms can be kept in the representation (3). In this case the rotational
transition probability in the collison of two molecules will equal the square of the absolute value of the matrix
element of the perturbation operator for this transition.

Evaluating the matrix element of the perturbation operator and averaging the probabilities with respect
to the projections of the initial angular momentams my, m,, and m, we obtain the following expression for the
rotational transition probability during molecule collisions:

P(jy = j1s fa—>jo, J, E) =

_ a2 B"'
o

2
b 1
Xls—ﬂ[.z?’*(qhy——/chy) B” shv} shﬂ [) — (shy’ ——xchy)—b,,, shy’ H

ﬁ:ﬂll\zl M., _|aZ|v2w
ho ; E J2h? Ta B”’

2R2
—~1/2
_B || (p_ I
Y= 7 al'ccost 1'— B—"z E 24’”}?% .

Let us note that 8! and y' are the same functions as 8 and y, with respect to E* and J', where E'=E +
AT, Moreover, in the case of deactivation of one of the molecules for one-quantum R—T transitions,

2o @ (jy— Iy T = Jo) ) X

where

‘D(jl'*jl—iv ]) 2] +1v f(J)—i
for two-quantum R—T transitions,

; A —1)
O(i>h—2ijo)= 40'(';7}'1—_1__;)'(93—1_ﬁ)_’

JetLJ—1
W) = der—rer—s

and for one-gquantum R—R transitions,

. . 2 s 197 iid -
i~ i —1 h>h—V=mo=hag o V=1
In the case of two-quantum R—R transitions, the averaging with respect to the projections is performed
on an electronic computer, and the dependence obtained is approximated by functions convenient for the sub-
sequent calculations. Consequently, for two-quantum R-R transitions,

J1(ja —1) Jollsg — 1)
500 (711 — 1) 2/ + 1) 2]y — 1) 2/ + 1)’

®(j, = 1 —2, jo>Ja— 2) =
f(Jy=1 c(al-j-b)’
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where a=5.42, b =7.82, and ¢=0.,43

If one or 2oth molecules are excited, in the expressions for ® the rotational quantum number j should be
replaced by (j +1) everywhere except in the statistical weight (2j +1) in the denominator

Let us now determine the temperature dependence of the transition probability of a molecule with a j~-th
rotational level during the collision of two molecules

Under the assumption that the distribution of the total
energy of the colliding molecules is subject to Gibbs law, and the distribution in the quantum number J is a
Boltzmann distribution, the average probability is written as follows
g ‘ : B . e
P(jy—Jis Ja—>T2) = e 5 PUi— 71, Ja—>12) X
_ gz
AZ— AT |

xe T \ @F+ )iy e R‘Td.l X

111 By B

/<O§ 51"16[‘_ —& (shy + uchy)——wshy}
. .1 i Bn
—STB—{Z I)Q(th —xChy)_ET_Shv:‘l

where x = (1/T) [E- (3%%/2MR%)] for AT > 0; x
energy units,

3

e~*dr, n
1/T) [E'-(@%?%/2MR%)] for AT <0; and T is the temperature in
Using the saddle-point method to evaluate the integral in (7), the following expressions can be obtained
for P(jy~j'y, ja=i"s):

AS— AT}
AT 2 8 : i R 5
P(jy—~ji. =72 =tr 5 ®(h—~iu a>joe T

X (8)
h {(;l TR SG Vﬁ (l :r)1 N (VT}W(:l + GL%)}
P(jy— i o> o) = Faat EZ, Dy = T1e o) 1%%;11(1 L= o
where glztié%—%")chx—;lg—xshx éz%gixchx—(é%é
By 4 Al T

ha

Because of the approximations used for the calculations, (8) is valid for T << #2Zi%,, if ®r<1, and for
T<

— &, if ®r>1, while {9) is valid for 7 e, <T <_._ £ where £y =B"Y4B! is the depth of the potential well

If the role of attraction is small, it is possible to go from the Morse potential over to the potential of
exponential form [3]:

e .oy ATEME AT
Pesp(jy - ji, fao o) = TT*I;"L

(B*) @ (jy—>J1. jo>io )]/T(

2) T

)2 (10)
where T < w?|AX |2 M/2h%a?

Analogous formulas [1] are obtained in computing the rotational transition probabilities during the collis-
ion between a molecule and an atom,

The formulas obtained are valid when the matrix elements f(, meaning the transition probabilities, are
small. If this condition is not satisfied, then the contribution of the next terms in the expansion (3) to the prob-
ability should be taken into account. Such a computation can be performed by using an electronic computer
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The temperature ranges in which the expressions for the probabilities are applicable are determined by

| AT l'/-m

the value of the parameter » — ¥V =
o ‘0

Formula (8) is valid at the temperatures T < £, while formula (9)

is valid for T>> g, (for the molecules HC1—- HC], for instance, for T> 300°K).

The transition probability grows with the rise in temperature, For ® <1, as well as for » > 1 the prob~
abilities at low levels increase with the rise in the number of the level j, and for > 1 they diminish exponen-
tially at higher levels. Here the larger the rotational constant B, of the molecule, and the smaller the value
of a, the more rapidly does the probability decrease.

Although exact relationships between the coefficients in the anisotropic part of the potential are unknown,
it is interesting to compare the different transition probabilities on the basis of the results of this paper, Es-
timates show that the probabilities of one-quantum R—T and R—R transition are several times greater than the
probabilities of two-quantum R—T and R—R transitions. Here the ratio between the probabilities of the one-
quantum and two-quantum transitions increases with the increase in j. However, let us note that the probabili-
ties of two~-quantum transition can be commensurate to the probabilities of one~quantum transitions for small
values of ® corresponding, particularly, to large ¢. But this is only observed for small j. Such a dependence
of the rotational transition probabilities on the number of the level j can be explained by the fact that the spacing
between the low levels is so small that the kinetic energy turns out to be sufficient to cause multiquantum trans-
itions. The spacing between the levels increases for large quantum numbers j and one-quantum processes turn
out to be more effective,

The probabilities of R—R processes are less than the probabilities of R—~T processes when both colliding
molecules are simultaneously excited or deactivated, but are commensurate and even greater if counter R—R
transitions are considered {one molecule is excited while the other is deactivated).

Let us note that the exponential potential yields a different dependence of the probabilities on « j, and the
other parameters at low temperatures than does the Morse potential. The probabilities (10) obtained by using
the intermolecular potential in exponential form differ from the results in [1, 2], This is related to the dif-
ferent method of taking the average with respect to the energy as well as to the more accurate solution of the
classical equation of motion. The probabilities obtained in this paper satisfy the principle of detailed equilib-
rium,
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